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Summary:

The traditional formula for determining the required embedment depth for nonconstrained posts assumes
that shear and moment at grade have the same algebraic sign, as is the case for determinant structures
which are free to translate laterally (flag poles or billboard signs). This presentation demonstrates that
with an indeterminant lateral force resistive system which consists of a combination of embedded posts
and structural diaphragms (many buildings), the shear and moment at grade most often have opposite
algebraic signs. An expression is derived for the critical eave deflection where base moments go from
negative to positive.
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BACKGROUND

Traditionally, the derivation of
embedment formulas begins with these
assumptions:

1. The soil resistance to deformation is
proportional to displacement.

2. The resistance to deformation increases
linearly with depth below grade.

3. The post is rigid below grade. (Meador 1997)

Using these, the following equation for
the depth below grade to the point of post
rotation can be developed for a nonconstrained
post. The derivation of this equation is beyond
the scope of this brief paper, but it is readily

available in the literature (Bohnhoff, 1992)
(Meador, 1997).

-, (4M+37d) Q)
(6M+4Vd)

Where:

y = depth below grade to the point of
rotation;

V= shear at grade;
M= bending moment at grade;
d= depth of post embedment.

- By an examination of (1), one can make the
following observations. When: ’

V=0 y= 2/3d Case 1;
M= 0 y= 3/4d Case 2;
M<0Oand V>0 > 3/4d Case 3.

Prior to the emergence of post-frame
diaphragm design methods, it was commonly
assumed that the posts resisted all of the lateral
wind loads. For such a structure, negative
moments could not develop at grade so Case 3
could be neglected. This has given rise to the

common misconception that ;- always varies
from 2/3d to 3/4d for a nonconstrained post. y

falls in this range only if V and M have the same
sign. In a structure where lateral loads are
resisted by both posts and a system of
diaphragms, it is certainly possible that they do
not.

Figure 1 shows the deflected shape of a
post free to deflect at the eave (billboard) and
Figure 2 shows the deflected shape of the same
post restrained at the eave (post-frame building).
Because of the indeterminant nature of the
embedded post with eave restraint, it is obvious
that the post could assume the deflected shape
shown in Figure 2, but it is not obvious what
shape it will assume.

PPSA4 MODEL

~ One straightforward way to determine
the deflected shapes and soil pressure profiles
each case generates is to analyze the two
analogs shown in Figures 3 and 4 using a matrix
analysis computer program such as the Purdue
Plane Structures Analyzer 4 (PPSA4). The soil
is modeled as a series of “bars” or “springs.”
Their stiffness can be increased linearly with
depth below grade by increasing their “area”, just
as the soil is assumed to.

Itis necessary to have a “stiffness” of
the sail, n, Both Bohnhoff (1992) and Meador

(1997) developed soil stiffness values based on
the work of earlier researchers. They assigned a
range of values from 1000 pounds per cubic foot
per foot below grade (pcf/ft) for soft clay to
40,000 pcf/ft for firm gravel (Meador 1997).

Meador (1997) states that a deflection x
at a distance y below the ground surface results
in a soil pressure of nyx- Thus, the total force

on the first soil element from grade is:

P = nyxb(d (2)

Where:

anlg)

n,= constant of horizontal soil reaction.



y, = depth below grade to the center of the first

soil analog element.

Dot™ arbitrary height of the soil element;

b = effective width of the post.

Applying the familiar equation for axial
deflection of a bar to the first analog “bar” (of unit
area) yields:

_ x(unit area)E e (3)
| L onig
Where:
E,,,, = an ‘equivalent’ modulus of elasticity

L,.= arbitrary length of the soil analog “bar.”
anlg

Equating (2) and (3) yields a modulus of
elasticity of the soil analog element (using a set
of consistent units):

(4)
_ n hy 1 b (danlg) (L anlg)

anlg ™

(unit area)

Example

A nonconstrained building post
measures 120 inches, h, from grade to eave.
The post embedment, d, is 48 inches. The post
is subjected to a uniform wind load of 10 pounds
per linear inch of height. Two conditions were
considered, one a post free to deflect at the eave
{(Analog 1), and two, a post completely laterally
restrained at the eave by a stiff roof diaphragm
(Analog 2). The post has an effective width, b,
of 7.78" and an El of 93,590,000 Ibf(in)(in). A
height of 8 inches was chosen for each soil
analog element, with the depth to the center of
the first element, Y of 4 inches. A length of

10 inches was chosen for the soil elements.

Analyses were performed for both
Analogs 1 and 2 using n, values of 1000, 5000,

10000 and 40000 pcf/ft. The corresponding
E_, ‘values are shown in Table 1. The
4

an
calculated values for reactions in the soil analog
elements and shear (Vg) and moment (Mg) at
grade are presented in Graphs 1 and 2a through
2d. Solil pressure is directly proportional to these
reactions. Graph 1 shows a reaction profile that
is typical of the “traditional” nonconstrained post
analyses. This result tends to confirm the
validity of the analog.

For condition 2, current design practice

is to assume that the soil pressure profile will be

similar to the “traditional” profile, albeit for a
smaller base moment. However, as the graphs
show, this is not the case. For this example all
of the base moments for condition 2 are
negative. A “traditional” reaction profile was
generated by applying the same shear with a
positive moment at grade {o Analog 3 (Figure 6).
(Both reaction profiles are plotted as positive in
Graphs 2a through 2d for ease of comparison.)

CRITICAL DEFLECTION AT THE EAVE

The deflected shape of the
indeterminant post can also be determined by
recognizing that when moment at grade equals
zero, the shear at both the eave restraint and
grade will equal half of the applied uniform load.
One can solve for the eave deflection required
for this condition to develop by applying the
principle of superposition as shown in Figure 5.
First the post is analyzed under uniform wind
loading. Second the post is analyzed for a
concentrated restraining force at the eave.
Finally the critical deflection can be found by
summing the component deflections.

First, consider thé deflection at grade of
the unrestrained post using a relationship
developed by Meador (1997, Equation 64);

6(4M+3Vd) ©)

n hbd 3
Where:

A = the lateral deflection at grade of a post
without eave restraint (Figure 1).



For a post with uniform wind pressure:

©)

:wh2

Y2

M

V =wh
w
Where

w = the uniform wind load (pounds per inch)
against the post

Substituting (6) and (7} into (1) yields:

; —d( 2h +3d) ®)
Y S vad
Determine deflection at grade using (5):
6wh ®)
A = (2h+3d)
n,bd’

The deflection at the eave, due to rotation below
grade is then:

7, 10
Ae =A __yw
Yw
Substituting (8) and (9) into (10) yields:
6wh (11)
Ae, =27 (3h2+6dh+3d?)
n,bd* .

“There is also an elastic component to
the deflection at the eave (Figure 1). From any
. standard engineering text the formula for this
deflection (neglecting shear) is:

y (12)
_w

Ae. =
* 8EI

Where:

E = the modulus of elasticity of the post

[ = the moment of inertia of the post

The deflections, §e, due to the
restraining force, Re, can be derived similarly:

(13)
Vv :Re:ﬂ
2
. (14)
Mr=Reh=w
2
Substituting (13) and (14) into (1) yields: -
15
;7=d(2h+1'5d) (19)
" 3h+2d

Determine deflection at grade using (5):

_ 6wh 1o

n,bd’

A

r

(2h+1.5d)

The deflection at the eave, due to rotation below
grade is then:

(h+y)

v,
Substituting (15) and (16) into (17) yields:

(17)
Be,=A,

__6wh e

nhbd4

Se Bh*+4dh+1.5d%)

1

The elastic deflection due to restraining force at
the eave is:

(19)
_Reh > wht

3EI 6EI

Oe

2
The critical deﬂectioh is then:

Acr=Ae1 +Ae2 —5e1 ~5e2 20

Substituting (11), (12), (18) and (19) into (20)
yields:



" o (21)
A =" _(ap+3d) - =
nkbd3 24E1

For eave deflections less than the critical

deflection, negative moments will develop at the
base. For eave deflections greater than the
critical deflection, positive moments will develop
at the base. A word of caution is necessary. As
the required soil stiffness becomes higher, the
moment at grade becomes more sensitive to
original assumption number three, that the post
is rigid below grade. This assumption is not
made when a matrix analysis program is used.
Such analysis gives a slightly greater critical
eave deflection than when deflections below
grade are neglected.

For the previous example, Table 1 also
presents the critical eave deflections calculated
using (21) and PPSA4.

CONCLUSIONS

When a nonconstrained post is
supported above grade by a diaphragm, the
structure becomes indeterminant. Often the
shear and moment at grade will not act in the
sense that is assumed by the traditional

. FURTHER STUDY

Current design practice is to increase
the allowable lateral soil bearing pressure by a
factor of two, when the post is isolated. ltis
unclear if rather than increasing the allowable
soil pressure, one should increase the effective
width of the post, b. Increasing b increases the
lateral stiffness of the embedded post, where as
current practice does not.
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TABLE 1
n, soil stiffness Eiznlg' soil element ‘E' * Acr , per (21) + Acr , PPSA4 +
1000 pcfift 120 psi 53.216" 53.826"
5000 pcf/ft 600 psi 9.905" 10.184"
10,000 pcfift ) ' 1200 psi 4.490" 4.740"
40,000 pcf/it 4800 psi 0.430" 0.650"
*h=778" danlg = 8", v, = 4", Lo = 10"

+ h=120" d = 48", w =10 pli,
Ef = 93.59E8 bf(in*2)
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Figure 5. Nonconstrained Post at Critical Deflection

Moment at Grade, Mg = 0O
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